Sunday 14 May 2017

The 5 Reasons Why We Still See Security Wearing Wired Security Earpieces

Advancement in technology has changed the form of how electronic devices look like, how they operate and consequently how we handle them. Devices such as radios have become smaller, lighter and wireless. The advent of Bluetooth has enabled radios to connect without any physical connections; notably saving us from the fuss of tangled and visible wires. The wireless earpieces are in use, but it is important to note that they have not completely taken over from the wired covert earpieces. With the convenience and technological advancement they offer, why is it that they have not replaced their wired counterparts especially in fields of operation? Here are a few thoughts:

Reliability

Wireless earpieces are not as reliable as the wired ones. The technology that supports Bluetooth communication has it that the source device (radio) and the receiving device (earpiece) have to be at a certain distance from each other and nothing should come in between the path of transmission of the two devices. This means that if any of the two requirements are not as anticipated, functionality is compromised. Wired earpieces do not have the complication of interference and limited bandwidth. When you are in a situation where reliability is crucial, where you cannot afford to lose connection, say you are out in the field on operation, it would make sense to use wired covert earpieces as they are easy to handle, making them more reliable.

Limited Operational Lifetime

For a wireless device to be operational, it needs to be charged. When out on assignment, the crew will need to ensure that they have fully charged the wireless earphones and carried a fully-charged extra battery. The batteries work on a limited operational lifetime which burdens the crew as they have to keep replacing the batteries every time. When pack ing batteries for replacement, one should pack enough to cater for both the radio and earphone. This is not the case with the wired pieces. For wired pieces, the crew only has to worry about a single cable that will connect the radio to the earphones. The wired option is therefore less of a burden to handle than the wireless ones.

Necessary Visibility

In some instances, the visibility of the wires, which the wireless earpieces work against, is crucial in making a statement. In a security situation, the wired pieces are visible to the human eye; they make the public aware of the security. The visibility in itself reinforces security, deterring any harmful or criminal practices that may take place. In such a situation, wireless pieces are of no use as no security statement will be made.

Disruption and Negative Interference

Wireless earpieces are vulnerable to signal disruption and negative interference. It is possible for a wireless-transmitted signal to be compromised- an activity that may cause threats and anomalies. A signal transmitted by wireless means may be decrypted and accessed by unauthorized people. At the same time, the signal may be compromised in a way the end product that is received as sound is not what was initially transmitted. Bluetooth is open to any form of interference, be it purposeful or accidental. The wired covert earpiece on the other hand greatly reduce the possibility of such malpractices as it would be hard to physically interfere with transmission without anyone noticing.



Misplacing earpieces during an incident

In the event of an incident, it would be hard to misplace a wired covert earpiece. This is becaus e, when an agent is on the move or if they make any vigorous movements, the radio earpiece might be detached from the ear but will not fall; it is tethered to the radio using the wire. On the other hand, a Bluetooth earpiece would probably detach itself from the ear, fall down and be misplaced as it has no physical tethering to the radio device. This will cost an agent a lot of time in looking for a misplaced device and even the responsibility of a lost device.

When it comes to technology, the feature advancements are normally made to our convenience and efficiency but in some cases, the old way of doing things would prove to be better. Wired radio earpieces have major advantages over their wireless counterparts, making them hard to phase out. What the wireless earpieces can function as at this point is as a complimentary device to the wired one.

Rifleman Radio is indispensable

When the army are on the battlefield, the equipment that they carry and the weight of it is paramount. Most two way radios are one of two things, light and easily breakable, with limited power, meaning limited range or heavy and the opposite to the above, Robust and able to transmit at a lengthy distance. The current development for a 2 channel that’s able to receive and transmit voice and data is an interesting concept. This article, that can originally be found here, give you more of the story.  

Nearly two years after the award of the Rifleman Radio contract, I made an appeal for new thinking by both the defense acquisition corps and the defense industry that now bears repeating.

Twenty-two months ago, the need for the Rifleman Radio was obvious as it is today. It provides infantry units with a relatively small and lower cost software-defined radio capable of transmi tting voice and data, such as maps, images and texts. The technology that defines this “workhorse” tactical radio was continuing to mature, resulting in today’s Rifleman Radio being far more reliable and capable than the LRIP-ordered radios from even three years ago.

This maturation process was being driven by ongoing investments in radio technology made by the defense industry, including Thales and Harris Corporation, the two companies selected by the Army to build the Rifleman Radio.

At that time, I noted that success in the Defense Department's new “Non-Developmental Items” or NDI strategy for the Army’s HMS program would require three things:



  • People. Bringing the right people together from three key groups for meaningful engagement: those defining the capabilities; those acquiring the capability for the government and industry; and those who have to deliver the capability to the Warfighter.


  • Dialogue. Creating ethical opportunities for face-to-face discussions with industry (not RFI dialogues) about the state of technology innovation and what is feasible to provide in a reasonable time and at a reasonable price.


  • Strategy. Building a shared understanding that this new NDI marketplace for tactical radios that requires industry to invest their own money to develop products will be one that delivers greater and greater capabilities over time, in other words, iteratively.




Where are we now? 

The Army is currently working to develop requirements for a 2-channel variant of the Rifleman Radio, a significant step in the Rifleman’s continuing evolution. The fundamental 2-channel communications capability â€" whether handheld or manpack variants â€" represents the future of tactical communications.

Two-channel capabilities for the small-unit leader radio like the Rifleman will meet the Army’s evolving tactical communications needs, with its ability to receive and transmit voice and data simultaneously, passing data to and from command to the unit.

The 2-channel Rifleman Radio will provide new capabilities without adding weight from extra radios and batteries. In short, it will provide the capability of two radios without burdening troops with lugging around two radios.

Viewed from a technical perspective, however, a 2-channel handheld radio represents an exponential leap in terms of complexity â€" it bears no relationship to the notion of “fusing two 1-channel radios together.”



Even the 2-channel HMS Manpack represents a tremendous technological leap forward, though it came with fewer space, size, power and weight limitations than the much smaller handheld Rifleman undoubtedly will. In short, the 2-channel Rifleman Radio will be a tall mountain to climb.

The future Rifleman 2-channel

The 2-channel Rifleman is an achievable reality, however, and speaking for Harris, we’re already well on the way to delivering this capability. The U.S. Special Operations Command (SOF) Tactical Communications (STC) 2-channel handheld radio being developed by Harris for special operations forces is leading the way to this future.

The STC radios are able to operate in the harshest environments and are specially designed to meet rigorous requirements. The STCs are small, lightweight, multiband and multifunction, with multi-mission capability to enable SOF teams to communicate over multiple channels simultaneously.

The Harris STC will provide the ability to receive ISR full-motion video and signals-based threat information. These handheld radios also will have built-in backward interoperability to communicate over legacy networks, and w ill be upgradable to integrate new capabilities as requirements evolve.

Although the Army’s requirements are still coming together, the 2-channel Rifleman most likely will trade fewer features for less cost. That said, there are many technical attributes related to the 2-channel capability that are likely to be applied from the Harris STC to the next iteration of the Rifleman.

The important takeaway here is that the Army’s continued commitment to evolving tactical communications has led industry to sustain its investment in advancing capabilities â€" and that formula has brought the 2-channel handheld much closer to reality.

Whether it is the STC or 2-channel Rifleman, the coming wave of new communication capabilities are the result of persistent innovations in myriad radio components: chip design, software, battery life, power consumption and antennas, to name a few.

As I pointed out in January 2015, the development of the Rifleman Radio would represent just the first iteration in the Army’s modernization of tactical radios ― a commitment that would deliver even more revolutionary capabilities over the next decade. But this will only happen if the Army maintains its end of the bargain by assuring industry that ongoing investments would be rewarded with purchases of the end products.

If BBP 1.0, 2.0 and 3.0 continue to be nurtured and “take root,” these radio technology capabilities will continue to evolve with each measured investment making possible continuing progress. Such an active NDI marketplace will ensure industry remains committed to R&D â€" and the beneficiary of this healthy dynamic is the warfighter.

Sunday 26 March 2017

How To Select The Right Radio Earpiece

When choosing a radio earpiece, there are several factors that should be considered. A radio earpiece should not only aid in communication it should also protect the user’s ear against cumulative ear damage that may eventually result in ear loss. Below are the factors that you should consider when buying a radio earpiece;

1) Clarity of communication

The most important reason as to why you have a radio is for clear communication and this is what your radio earpiece should enhance. Although there are several radio earpieces out there, many of them use bone conduction when transmitting the user’s speech meaning that they heavily rely on vibrations of one’s skull as they talk. This does not help much in ensuring that the communications are clear especially when one is on the move.

You should therefore go for a system whose in-ear microphone does not use bone conduction and this will enhance the soun d clarity. Such a system can even transmit speeches when one is whispering and this comes in handy especially when in an environment where secrecy is very crucial.

2) Comfort

It is very important to select a system that you feel comfortable with most importantly when you are to wear it on your head. Note that, you will probably be wearing the gear for long hours and that is why it should be of lightweight and should not in any way interfere with your eye wear or helmet.

Avoid heavy, sweaty and coiled tube earpieces that are very uncomfortable and will cause ear fatigue. Instead, go for a radio earpiece whose microphone is built into the earbud itself. Such earpieces come in various shapes and sizes and can even be customized to fit the specific needs of a user. Note that, military-grade materials are specifically designed to be of lightweight.

3) Durability

Durability is a very important factor that should be considered when choosing a radio earpiece . You obviously don’t want to be wasting your time and money going back to look for another earpiece just because the one you chose did not last. This is why it is very important to select a system that is durable and has been tested for rugged use of a soldier or a SWAT officer. Go for one whose manufacturer is experienced in manufacturing earpieces that can withstand water, dirt, shock and even extreme temperatures.

4) Ease of use

Your radio earpiece should be easy to use because you can’t afford to mess up with the push-to-talk or the on & off buttons especially when on the move. Your gear should immediately fit into your actions with minimum effort. Look at the operational and the ergonomic features of the various radio earpieces and make sure that all its features are both of the right sizes and in the right places.

5) Hearing protection

Claims related to hearing loss and its related dis abilities is on the rise among police & military veterans and this has led to the need for hearing protection for officers. Note that, hearing loss occurs cumulatively over time and it is irreversible. This is in addition to the fact that it has been associated with cognitive decline and that is why even the minor hearing loss can have a huge impact in the course of time. Select a radio earpiece that not only ensures effective communication, but also the hearing safety of the user.

6) Situational awareness

An earpiece is basically meant to keep you focused and keep your hands free. You should be aware of what is happening in their surrounding and that is why a radio earpiece should allow one to hear sounds that are outside, to stay alert with their surroundings.

In order to have full communications (just like one would have without anything in their ears), it is wise to choose a radio earpiece that has an external microphone. There are systems that even enable you to adjust volume of the external microphone and this ensures that you are aware of the happenings in your surroundings.

7) Modularity & Compatibility

There are several systems that are available out there and you should look for one that fits your requirements. As mentioned above, some of them can be customized to fit an individual user’s specific needs so you can never run out of options.

A radio earpiece that has a modular connector is good as you can change it to match even a different radio without having to replace the entire system. Some systems can even go with both earbuds and over-the-ear earpieces so depending on your needs, select the appropriate system.



8) Affordability

Many years ago radio earpieces cost £100 and upwards, these days you can get a D-ring earpiece for less than £15 and an acoustic tube for about £25. Bone conductor earpieces that were previously and expensive piece of technology, can be yours for about £40.

Saturday 18 March 2017

Sepura Contributes to Success of World’s First Cross-border TETRA System

We take it for granted that when we move around the country our mobile phones connect to the nearest mast, or we go abroad and our phones automatically connect to the network, with tetra, this is not as easy, but this article is about a test that Sepura completed connecting two TETRA networks in Norway and Sweden, interesting stuff.



Sepura radios have successfully participated in interoperability trials for the world’s first cross-border TETRA communication system, linking RAKEL and Nødnett, Sweden and Norway’s public safety networks.

More than 350 first responders were involved in the trials, which took place in Meråker, close to the Swedish border, in a crisis response exercise involving public safety users from both countries.

The cross-border system utilises TETRA Inter-System Interface (ISI) functional ity to connect networks together, effectively allowing users to roam to another network. This allows first responders to use their radios in both countries â€" vital for smooth collaboration in emergency situations.

The initiative to strengthen co-operation between national emergency services started in 2013 with the EU-funded Inter-System Interoperability project, designed to improve the ability to respond to natural disasters and security threats. The RAKEL and Nødnett networks are scheduled to be ready for bi-national operational use in early 2017.

Sepura’s STP9000 hand-portable radios and SRG3900 mobile radios were used by both Swedish and Norwegian emergency services during the exercise, although all Sepura radios â€" including the new flagship SC20 range â€" meet the technical requirements of the ISI system.

“This is one of the most advanced multinational radio communication projects in Europe,” said Tariq Haque, Product Manager for Sepura.
< br>“After two years’ development, bi-national interoperability has become a reality, bringing cross-border mission critical communications to Sweden and Norway.

“We are extremely pleased to have played a part in this ground-breaking event.”

Source - http://www.tetra-applications.com/33643/news/sepura-contributes-to-success-of-world-s-first-cross-border-tetra-system

Tuesday 14 March 2017

Occupational health effects linked to terrestrial trunked radios (TETRA)

Tetra has been the main stay for the Emergency services for over 10 years and it has been a used by other industries for longer than that. There has been plenty of time for health concerns to be brought up and as the technology is similar to mobile phone, which has been around for 20+ years and radio communications (walkie talkies) for much longer than that, and no really hard evidence has ever been brought that either of these two cause health issues, this article probes the possibilities of TETRA causing health concerns, see what they uncover below.

The use of terrestrial trunked radios (TETRAs) has raised concerns about health and sickness absence. Jackie Cinnamond looks at the evidence for a precautionary approach.

The British police and the other emergency services use a communication system involving technology called TETR A (terrestrial trunked radio), which is halfway between a mobile phone system and a walkie-talkie.

At one NHS trust during the autumn of 2013, it was noted that there seemed to be a correlation between increasing levels of sickness absence in ambulance staff and the recent introduction of TETRAs.

This assumed association was based upon clinical presentations of cases being seen in occupational health practice involving ambulance service employees, who maintain that their portable radio handsets are causing them to experience adverse health effects.

TETRA is the leading public safety radio communications system worldwide, and serves to enhance the function of almost 500,000 police, ambulance and firefighting employees (Airwave solutions, 2012; Motorola, 2007).

The Government commissioned TETRA in 2005 at a cost of £3 billion. It did so in response to concerns raised by the Police Federation regarding the use of a two-way radio communication system and its link with breast cancer in female operatives (Police Federation News, 2005).

The use of TETRAs was contentious due to similar health fears raised by the Health Protection Agency and its working group of 2001. Consequently, the Airwave Health Monitoring Study started in 2009 and the findings are due to be released in 2018 (Imperial College London, 2009). This long-term, observational study is investigating health outcomes of TETRA users within the police force.

Initial concerns were raised by Lancashire police after it was introduced, when almost 200 police officers began to experience symptoms of nausea, malaise, head pain, insomnia, skin complaints and two cases of oesophageal cancer (Farrell, 2002; Police Federation News, 2005).

Comparably, these symptoms correlate with reports of symptoms experienced by the ambulance employees within this trust, soon after the TETRA system was purchased, and which could be associated with electromagnetic radiation emi tted by this technology.

Technical issues related to TETRAs

Radiation is a source of energy produced during atom separation. The process of ionisation results in the addition, or removal, of one or more electrons from an atom or molecule.

The force of the electromagnetic energy waves released during separation are categorised as either non-ionising, where the energy released is insufficient to ionise matter, or ionising radiation, where adequate energy is present to ionise matter (Tillman, 2007).

Ionising radiation is associated with the X-ray process; and non-ionising radiation is associated with the transmission and receipt of mobile telecommunication signals (IEGMP, 2000).

Electromagnetic fields are quantified by their wavelength, and the frequency at which the wave pulsates (Sanchez, 2006).

The wavelength frequencies are expressed in Hertz (Hz) and oscillate within a spectrum where one Hz is one oscillation per second, and one kilo Hertz (kHz) is 1,000 Hz. Radios using 16-17Hz should be avoided as these frequencies are known to adversely affect health. TETRAs operate at a frequency of 17.6Hz

Potential implications for health

Mobile telecommunication devices are a cause of contention. The health effects associated with their use remain unproven (Kundi, 2009). Human stem cells are more susceptible to electromagnetic fields compared with differentiated human primary cells. The constraining influences of electromagnetic fields upon DNA regeneration in human stem cells could manifest itself in the development of abnormalities within the DNA replication process. Consequently, the initiation of cancer may result (Valberg et al, 2007).

With an estimated 500,000 emergency service employees currently using TETRA systems, if a causal relationship between the use of portable radio handsets and cancer development was subsequently established, then this could present a significant OH and public healt h challenge (Health Professionals Council, 2011; Dhani, 2012).

Current research

The incessant proliferation of wireless telecommunications technology use has intensified public fears and generated international debate regarding the chances of cancer developing as a direct consequence of exposure to electromagnetic fields emitted from devices such as mobile phones (Kundi, 2009).

Research findings accumulated over the past decade suggest a causal relationship between electromagnetic exposure through the use of wireless telecommunication systems and cancer development (Levis et al, 2011). Conflictingly, current research results conclude that there is insufficient evidence, or none at all, to suggest that acceptable electromagnetic frequencies emitted through mobile phone use can cause adverse health conditions or cancer (Kundi, 2009).

However, the majority of current research studies are sponsored by the telecommunication industry and, therefore, finding s tend to significantly underestimate cancer risk. The overall accumulation of research findings, regardless of study design imperfections and financial bias, leans towards the opinion that there is an increased likelihood of a causal relationship between mobile phone use and cancer (Kundi, 2009; Levis et al, 2011).

Legislation related to TETRAs

Although most technology poses some level of risk to human health, such threats must be measured precisely and dependably (Levis et al, 2011). Presently, two international organisations â€" the International Commission on Non-Ionising Radiation Protection (ICNIRP) and the National Radiological Protection Board (NRPB) â€" have produced guidelines for limiting exposure to electromagnetic fields within the UK and the European Union (EU).

The ICNIRP (1998) recommendations have been integrated into the European Council Recommendations (1999) and have subsequently been incorporated into statute in Germany (WHO, 2011).
< br>Limits for human exposure to electromagnetic fields have been set accordingly by the ICNIRP and the NRPB (1993) at between 10 and 300 GHz. However, the ICNIRP guidelines have established an upper limit for occupational exposure that is five times higher in employees than it is in the general public (IEGMP, 2000). The exposure limit values are referred to as “basic restrictions” and are based upon specific absorption rate (SAR), which equates to the rate at which the body absorbs energy in relation to each unit of body tissue (WHO, 2011).

Precautionary principles for TETRA use

In the absence of accurate guidance and methods for measuring exposure levels, the robust research evidence that establishes a causal link between electromagnetic exposure and cancer should be acknowledged and precautionary principles implemented (Hardell et al, 2005).

Precautionary principles with regard to electromagnetic radiation are defined by Valberg et al (2007) as implemen ting a safety-conscious approach prior to a significant causal link between electromagnetic fields and cancer development being established. The idea behind introducing precautionary principles is to try to reduce the degree of public concern regarding the potential health implications of exposure to electromagnetic fields (Wiedeman and Schutz, 2005).

However, the implementation of precautionary principles would be subjected to a cost-benefit analysis and, therefore, would be measured against what the populace deems financially equivalent to the cost of similar risks to society (Australian Radiation Protection and Nuclear Safety Agency, 2001).

Furthermore, their implementation may adversely increase the publics perception of risk and induce a psychosomatic-related development of adverse health problems and proceed to over burden already stretched resources unnecessarily.

However, the Bioinitiative Working Group (2012) contends that the public health approach to addressing exposure to electromagnetic fields should be viewed in the same regard as passive smoking and established on the current scientific evidence accessible.

Implications for OH

Despite the health risks associated with electromagnetic field exposure, the National Policing Improvement Agency continues to emphasise to its employees that the only adverse health effects of electromagnetic fields are established through tissue heating at significant levels.



It also discredited the accounts of the symptoms experienced by employees as psychosomatic conditions (Farrell, 2002; Police Federation News, 2005).

However, Kundi (2009) affirms that the carcinogenic effects of electromagnetic fields over a prolonged latency period are equivalent to the same intensities for smoking-related cancers. Furthermore, the latency period for cancer development is estimated to be 10-30 years. This raises concerns regarding the increased age of retirement, because occupational health departments could potentially have to adapt to accommodate older workers who have been subjected to long latency periods of electromagnetic exposure and its associated health conditions.

The Global Occupational Health Network (2006) advocates that staff undertaking occupational roles with a potential carcinogenic risk should be properly educated and instructed about the appropriate precautionary measures for working with carcinogens, in accordance with health and safety protocols.

The duty of care under s.2 of the Health and Safety at Work etc Act (1974) requires employers to implement what is reasonably practicable to safeguard the health and safety of their employees through the establishment of safe systems of work, and to ensure that staff are adequately informed regarding any potential hazards.

The Independen t Expert Group on Mobile Phones maintains that a precautionary approach to the use of mobile phones be adopted until more detailed and scientifically robust information on any potential health effects becomes apparent.

Conclusion

Telecommunication technology will continue to evolve and may be associated with future health risks. In the absence of any substantial research evidence to conclusively prove that exposure to electromagnetic fields does not pose a risk to health, precautionary measures should be implemented.

The emphasis of these measures should include policy changes that keeps pace with technological developments. This goes hand in hand with evidence-based practice and processes that educate employers and employees, aimed at minimising the potential health risks associated from prolonged electromagnetic field exposure. The findings of the airwave health monitoring study are eagerly awaited.

Monday 13 March 2017

WiFi Enabled LTE Small Cell Gateway Market to Register a Strong Growth By 2021 - PMR

On paper, connecting walkie talkie radios to a Wifi networkis is the most obvious method of controlling and communicating within a business. But the reality is that there aren’t many radios on the market that have the capability to do this and many wifi networks aren’t robust enough to manage lots of radios, this article predicts that this technology will be a growth market, we will wait and see.

WiFi enabled LTE small cell gateway is a type of a base station. Base station uses cellular wireless network for communicating with mobile phones or terminals. Base station connects mobile phones to a wireless carrier network and offers local coverage for a wireless network. The area of coverage varies from several miles to few city blocks. Each base station is typically owned by one carrier or wireless company and gives coverage only fo r that company's network. It may also offer roaming coverage for other networks in case carriers have agreement for roaming and technology is compatible. Base station comprises of an electronic cabinet which connected by means of cables to a group of antennas. The antennas may be mounted on an existing structure or on dedicated tower structure including top of a building, church steeple or smoke-stack and water tower.

In radio communications, base station refers to wireless communications station implemented at a fixed location and used to communicate as wireless telephone system including cellular GSM or CDMA cell site, part push-to-talk two-way radio system, terrestrial trunked radio and two-way radio. A single location often operates several base stations owned by a different carrier. Smaller types of base stations or small cells include picocells, femtocells and microcells. WiFi enabled LTE small cell gateway is promising network element. A wide variety of base station d eployments are in a small cell configuration. It has WiFi interface at end-use device and LTE interface at the carrier network.



Small cell is low-powered radio access nodes (operator-controlled) that operate in carrier-grade Wi-Fi (unlicensed) and licensed spectrum. Small cells normally have a range from 10 to numerous hundred meters. Small cell base stations are expected to play vital role in expanding the capacity of wireless networks due to increasing mobile data traffic. Mobile operators are increasingly looking forward to this technology in order to meet the rising demands for data, video and application access generated due to smart phones and other devices. Small cells aid mobile service that detect presence, interact wand connect with existing networks. Small cells offer increased quality of servic e and flexibility at an affordable cost. Small cell infrastructure implantation is an environmentally friendly approach as it reduces the number of cell towers and offers a cleaner signal using less power.

Rising numbers of wireless carriers or companies are taking dedicated interest in this industry owing to the proliferation of embedded WiFi features in fixed and mobile devices. Growing demand for more advanced handheld devices such as smart-phones and tablets is expected to create demand for technologies with high internet speed. This in turn, is expected to drive the growth of WiFi enabled LTE small cell gateways.

Wednesday 1 March 2017

MIT's new method of radio transmission could one day make wireless VR a reality

VR is the Buzz word for this year, every technology company clambering to get their headset out on to the market. Much of the market needs to catch-up though, the power of home computing needs to improve and removing the inevitable extra cabling and wires that come with current headsets. Luckily this article is about the future technology of VR headsets, see what we can expect as this technology grows.

If you want to use one of today's major VR headsets, whether the Oculus Rift, the HTC Vive, or the PS VR, you have to accept the fact that there will be an illusion-shattering cable that tethers you to the small supercomputer that's powering your virtual world.

But researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) may have a solution in MoVr, a wireless virtual reality system. Instead of using Wi-Fi or Bluetooth to transmit data, the research team’s MoVR system uses high-frequency millimeter wave radio to stream data from a computer to a headset wirelessly at dramatically faster speeds than traditional technology.



There have been a variety of approaches to solving this problem already. Smartphone-based headsets such as Google's Daydream View and Samsung's Gear VR allow for untethered VR by simply offloading the computational work directly to a phone inside the headset. Or the entire idea of VR backpacks, which allow for a more mobile VR experience by building a computer that's more easily carried. But there are still a lot of limitations to either of these solutions.

THE MOVR PROTOTYPE SIDESTEPS TETHERED VR ISSUES

Latency is the whole reason a wireless solution hasn't worked so far. VR is especially latency-sensitive, along with the huge bandwidth requirements that VR needs to display the level of high-resolution video required for virtual reality to work. But the MIT team claims that the millimeter wave signals can transmit fast enough to make a wireless VR headset feasible.

The issue with using millimeter wave technology is that the signal needs a direct line of sight, and fares poorly when it encounters any obstacles. MoVR gets around this by working as a programmable mirror that can direct the direction of the signal to the headset even while it’s moving to always make sure the signal is transmitting directly to the headset's receivers.

For now, the MoVR is simply a prototype, with the team hoping to further shrink down the system to allow for multiple wireless headsets in one room without encountering signal interference. But even as a proof-of-concept, it's an interesting perspective on how virtual reality could one day work.

Tuesday 28 February 2017

Airbus to display resilient PMR communications infrastructures and solutions at ShieldAfrica 2017

ShieldAfrica was started in 2013 and is a security conference for institutional and private operators to meet with companies to promote products and ideas, this years (2017) main theme is Safe Cities, component of Smart Cities, driving investment and economic development to the concept of connected and safer cities. Airbus are turning up to this years exhibition and they are showing off their PMR infrastructures, the source of the article is here, but you can read the whole lot below



To support the economic development of African societies and governments in a challenging security context, Airbus Defence and Space will show its latest radiocommunications technologies at the exhibition “ShieldAfrica” in Abidjan, Ivory Coast, in late January 2017.

Police, firefighters, and rescue services in Africa are increasingly in demand of more advanced and secured mobile communication tools. “ShieldAfrica” serves as a platform to discuss security applications which require sophisticated Professional Mobile Radio (PMR) technology on the continent.

Secure communications infrastructures

“Government organisations, such as police and emergency first responder services, need secure communications infrastructures for the whole of their national territory and also for critical sites, such as airports, ports and stadiums,” says Philippe Devos, Head of Strategic Campaigns and Government Affairs of Secure Land Communications at Airbus. “We can offer the needed communication means in Africa based on our profound experience as a world-leading PMR provider.”

African security and defence sectors

“Shieldafrica” is a key event for the African security and defence sectors and hosts the major players in this field, for instance African governments, the global security and defence industry and representatives of diplomacy. Besides showing newest achievements in mission critical communications, Airbus will also showcase the following solutions:



  • Tetra digital radio systemsassociated with modern command and control applications and handheld radios can support effectively shared network deployment models. With these systems at hand, dispatching positions of vehicles or persons can be managed easily by geolocalising Tetra subscribers or groups.


  • The Tactilon Agnetapp brings Tetra push-to-talk to an LTE smartphone. It allows users of commercial LTE networks to communicate securely within mission-critical Tetra networks.


  • The Tactilon Dabat, a smartphone and full Tetra radio in one device, enables users, such as police or firefighters, to operate securely with multimedia functions.




Providing interoperability

For more than 25 years, Airbus has equipped various governments around the world with resilient PMR communications infrastructures and solutions. The company has a proven track record of nationwide deployments providing interoperability to all security users organisations.

Tuesday 7 February 2017

Far offshore windfarms present communications challenges

This is an interesting article debating the different types of communication that can be used over a long distance, and as they distance moves further and further, the different types of communication drop off or become part of an infrastructure. As engineers battle with this problem, knowledge of how radio frequencies and applications becomes paramount.

As offshore windfarms are built further and further from land, alternatives to conventional VHF communications are going to be required

A cornerstone of any major project is clear communication between all parties. As we move windfarm construction further offshore, maintaining efficient voice and data communications becomes essential. With many projects now being constructed beyond the range of VHF radio and cellular telephone, such as a Gemini or Dudgeon offshore windfarms, crew transfer vessel (CTV) operators and their clients are experiencing challenges achieving practical and affordable offshore communications. My experience on two far offshore projects in the last 15 months has shown that creative thinking can work together with existing equipment such as TETRA radio to reduce the risks and stress that poor communications can generate.

Communication solutions on offshore windfarms depend on the phase that the operation is in, the size of the project and the distance from shore. Many smaller, older windfarms rely on VHF radios to communicate between shore and vessel and shore/vessel and work team on the turbines. However, VHF is limited in range being a line-of-sight system, and the signal has trouble penetrating structures such as wind turbines due to the Faraday cage effect. Conventional cellular telephone coverage is also possible on nearshore sites, with some windfarms installing a cellular mast within the windfarm. Vessels at anchor off the Dutch port of IJmuiden can thank the windfarm industry for good connection when waiting for a pilot if they have contracts with the provider KPN.

When moving further offshore, luxuries such as a cellular mast will not be installed during the construction phase, and it is most likely that VHF radios will not be sufficient. It is common for the developer to install a TETRA radio network â€" similar to those used by national emergency response services such as police and fire departments.



TETRA, or terrestrial trunked radio as it is properly termed, is a secure network allowing one-to-one, one-to-many and many-to-many communications. This means that the marine controller can speak directly and privately to one party or to the entire offshore spread depending on what is needed. It transmits on a lower frequency than VHF so covers a greater range. This still is not enough to cover the distances experienced on far offshore windfarms. If multiple base stations are used, each base station can then automatically rebroadcast a message thus expanding the network coverage. On a recent construction project, it was found that there were communications blackspots in the area of the sea passage from the base port to the site. This was later eliminated by fitting full base station units rather than just handheld transceivers on the CTVs. The CTVs then became vital links in the communications network and ensured the blackspots were reduced or eliminated altogether.

TETRA has many other advantages, including the ability to penetrate the tower of a wind turbine, and calls are not dropped when moving between base station carriers due to the network configuration. This is especially important if vessel-carried base stations are relaying far offshore. The network is also secure, which ensures that commercially sensitive information cannot be intercepted. With the one-to-one mode, it also means that managers can have detailed conversations on sensitive subjects.

However, anecdotal information received from vessel crews in the field appear to indicate that TETRA, although a good system, is not foolproof. One vessel master reported that, after 15 months on site, they still had blackspots with TETRA and sometimes have to use the cell phone application WhatsApp to request that turbines be started or stopped so that he can land a team.

TETRA does not solve the operational problems experienced by vessel-operating companies who require frequent voice and data communication with the CTVs to ensure a smooth delivery of service. As most sites far offshore are outside of cell phone coverage and clients demand that daily reports are issued on time, creativity is needed. There is a simple solution that could solve all of the communication problems far offshore â€" installing VSAT satellite communications on each CTV, which allows instant telephone and data transfer.

However, the practicalities of chartering in today’s windfarm industry eliminates this option, as the client will not want to pay for installation and operation, and a vessel owner cannot afford such a luxury. Charterers therefore need to make a decision: either they assume responsibility and the costs for practical workable satellite communications on their vessels or look for practical alternative solutions to deliver what is needed far offshore.

One practical solution to maintain communications between the marine co-ordination centre and vessels is to step back a generation and use medium frequency/high frequency single side band radios, which are common equipment on larger CTVs and is standard on service operation vessels (SOVs) or installation vessels.

When used in conjunction with the digital selective calling (DSC) function of the GMDSS standard, voice communications can be maintained at long distance without operating cost. Unfortunately, current guidance for the marine co-ordination in windfarms as found in the G9 Good practice guideline: The safe management of small service vessels used in the offshore wind industry does not yet consider marine co-ordination and communications in far offshore windfarms.

Another practical solution to improve data communication is to install powerful WiFi antennas on the decks of SOVs and other major offshore assets to allow CTVs to have internet access when they are in close proximity. CTVs can then download passenger manifests and weather reports and upload the daily progress report and synchronise planned maintenance and email systems.

CTVs spend considerable time in close proximity to the SOV during passenger transfer, bunkering or waiting for the next assignment, and it is relatively easy to set up the computers to connect and synchronise without operator input, thus reducing the risk of distraction. SOVs should be designed with space for CTV crews to use as a secure office so that laptops can be left connected to the network. In this way, crews can have two computers and prepare work when on shift, transfer via a data stick and upload when they go off shift.

One of the most effective tools that we have identified is WhatsApp, which seems to require very low signal strength to connect and transfer brief messages. On recent projects, we have found that most vessel/office communication occurs in this medium, including fault finding and incident reporting and investigation. Crews have found it quicker to video a CCTV system playback and send via WhatsApp than download the CCTV video and send it via a file transfer service. As synchronising an electronic planned maintenance system offshore is very time consuming, our superintendents have taken to sending the worklists via WhatsApp to the vessels who then confirm back with text or images when a job is complete. The superintendent then does the PMS administration from their office with the advantage of high speed network connections. Experience with WhatsApp has led me to believe that agile, low data applications will form part of the future of offshore communication.

Far offshore projects have moved from planning and dreaming to reality. However, effective and cost-efficient communication solutions have not moved with them. Like most challenges with far offshore windfarms, there is no single solution, but experience has shown that, with creativity and flexibility, projects can communicate with their teams and operators can manage their vessels.

Better equipment earlier on in the construction phase, such as MF/HF radios in the MCC and on the vessels, TERA base stations on the vessels and open deck WiFi on construction assets will all assist in improving safety and reducing stress while ensuring that unnecessary costs are not incurred.

Thursday 26 January 2017

Offering workers hearing protection options

Much Like Protecting your sight or looking after your health, your hearing should also be protected, this article tackles hearing protection within the workplace and what type of earplugs are best, Enjoy.

OSHA regulations dictate we offer a “variety” of hearing protectors to noise-exposed workers. What is best practice for providing a variety while keeping inventory to a minimum?



Per CFR 1910.95(i)(3), “Employees shall be given the opportunity to select their hearing protectors from a variety of suitable hearing protectors provided by the employer.” But does “variety of suitable hearing protectors” mean two or 10, earplugs or earmuffs, different colors or different sizes?

The wrong approach is to choose a variety based on factors that have no effect on protecting hearing, including the published noise reduction rating. Some safety managers offer several different large foam earplugs that are yellow, green and orange â€" mistakenly assuming they meet the “variety” requirement and not realizing that a significant portion of their workforce will never achieve an adequate fit with a large foam earplug. In those cases, their supposed “variety” actually limits the number of workers adequately protected.

This bad assumption is often codified into company safety policies that require a minimum NRR: “Approved hearing protectors must have an NRR of at least 32 decibels,” or similar criteria. By definition, that typically means a large foam earplug. Despite the higher NRR based on 10 laboratory test subjects, workers with smaller ear canals will never achieve an adequate fit with those large foam earplugs to stop noise-induced hearing loss.

What are the factors that affect good fit of an earplug?



  • Size: Like a cork in a bottle, an earplug that is too large or too small will never achieve an acoustic seal to protect hearing. Offering a variety of sizes significantly improves the percentage of employees obtaining a good fit.


  • Shape: Ear canal openings may appear round, oval or slit. A foam earplug often fills an oval or slit opening better than pre-molded earplugs.


  • Ease of insertion: Some workers have difficulty rolling or inserting foam earplugs due to lack of mobility. For these workers, an earplug with a stem may be easier to insert.




Based on thousands of fit tests administered to workers in the field, the following four earplug styles provide a selection that would adequately protect nearly every worker:



  • Large foam earplug


  • Smaller foam earplug


  • Large reusable earplug


  • Smaller reusable earplug




The good news is that offering a variety does not necessarily increase cost. Buying 1,000 earplugs of one style or 250 earplugs of four different styles is fairly equivalent in cost. But the bigger variety significantly increases the probability that more workers will be adequately protected.

Many worksites adjust their inventory based on results of their fit-testing of hearing protectors. By reviewing which earplugs repeatedly provide the best fit, these companies identify the gaps or duplications in their offering and can adjust accordingly. Sometimes, this means adding a smaller-size earplug, but many times companies find they can remove some less-effective earplugs from their inventory. It’s not necessary to carry a dozen different earplug styles.

Finally, any offering of hearing protection needs a hands-on training component. How can a workers determine whether their ear canal is large or small, round or oval? It’s impossible to view your own ear canal opening in a mirror. A quick glance by a safety trainer can be of tremendous benefit in helping workers select the right earplug the first time.

Monday 23 January 2017

What exactly is a walkie talkie headset

A Walkie Talkie is a handheld receiver or portable radio. Walkie talkies come in a pair and they communicate quietly with one another using radio waves, on a single shared frequency band.

Almost all of us grew up with walkie talkies. As children, and especially before the age of mobile phones and technology, we all had a pair and played with them in our gardens.

Walkie talkies have made a comeback. Or maybe they never really went out of style but now they’re sophisticated.

Each unit is battery powered and has an antenna for sending and receiving radio wave message. There is a transmitter / receiver and a loudspeaker. The loudspeaker doubles up as a microphone. There is a button that you push to talk, pretty much the same way that an intercom works. Some more sophisticated walkie talkies have separate loudspeakers and microphones; it just depends on what you need the walkie talkie for.

Walkie Talkies with noise cancelling headsets

Technology has changed so much and become so much more sophisticated. In the old days, think of the crackles that came with walkie talkies. It was often very difficult to hear what the other person was saying. But a pair of noise cancelling walkie talkie headsets will reduce or remove any unwanted sounds by using active noise control. Note that this is very different from passive headphones which use technique such as soundproofing. Noise cancelling is not soundproofing.

Our worlds are busy and we become bombarded and overwhelmed by everything around us. We need to listen to some things, but we want to cut out others. Noise Cancelling allows us to do this, while still allowing us to listen to the things we want to listen to at the volume we want them.

Pros of a walkie talkie headset?

Remember when we used to listen to music really loud so we could block out all the other external noise? You don't need to do this anymore. walkie talkie headsets will block out most excess or excessive sound, or the ones you want blocked out anyway. You can now listen to your music at the volume you want, which does not need to be crazy, and the other external sounds (baby crying, man snoring next to you) will be blocked out anyway. Finally, you can listen to and enjoy music in the way you want to enjoy it, at a natural volume. You can hear the fabulous music, have a rich listening experience, and still not be disturbed by chatter around you.

Noise cancelling headphones are fabulous for when you travel or commute. You may be the kind of person who gets on a plane and train and chats to everyone around you. But you may be more solitary and want to sit down and zone out. You can do this easily with a walkie talkie headset. The beauty is that on a plane you won’t hear the noise of the aircraft or its passengers, but you will still hear the safety announcements.

It’s really easy to work in a noisy environment with noise cancelling headphones. You can focus easily without being disturbed and can make use of any space, productively. You can even go and study your history while at a party or in a restaurant. It is also a good idea to use them at home, while studying for exams or so; they cut out the excess noise and you can focus totally on your work.

Students used to turn up the volume of their earphones in order to cut out the outside world’. But with a walkie talkie headset they are finding it is easier to study when music is at a lower volume and when the outside distractions have been eliminated.

Cons to noise cancelling headphones?

There are always cons to everything. Some parents may say they would prefer no headphones at all. They like their children to be available and to engage more and talk more, but we know this is the way of the world. Everyone uses headphones; parents included/ Use them in moderation of course, but still be sociable and take time out in the day, be headphone free, and engage.

Noise cancelling headphones are not very cheap and are in fact possibly even ten times more expensive than ordinary headphones. However, like anything that costs money, they will last for a long time and are super reliable. They may cost more money but will ultimately give a much better noise-free experience.

Lots of research has gone into the design of these special noise cancelling headphones. Each set consists of inner components that cancel out the disturbing external sounds. Ordinary headphones do not have these components, i.e., you cannot cut out the outside sounds. It is quite obvious then, why noise cancelling headphones are more expensive.

These internal components also use up a lot of power. The power can come from internal replaceable batteries or they can be rechargeable. The walkie talkie headset that carry their own power supply means they are heavier than ordinary headphones. Not all sets carry their own power supply. The ones that are rechargeable are lighter, but they can drain the devices they need to plug into for power.

The quality of sound when using a noise cancelling walkie talkie headset can be compromised. It is unusual though and it is only the most sensitive of ears that would pick this up. There have been very few complaints of a tinny almost mechanical sound, but these complaints are few and far between.

Not all sounds are blocked out by a walkie talkie headset, although we did mention this under pros as well. It is never possible to cancel out all external sounds, but we still need to be able to hear police sirens, pilot announcements or the high pitched screaming of your next door neighbor. All every day external sounds though are muffled and definitely much quieter, and the sounds that you don't need to hear, are gone.

Tuesday 10 January 2017

Army to Launch Another Competition for New Soldier Radio

In the modern world the army has to have perfect communications, from coordinating attacks to communicating with other platoons, on the battlefield it really could mean the difference between life and death. This article plans to find the next Military radio.

U.S. Army tactical radio officials plan to launch a competition for a new handheld radio next year that would give soldiers twice the capability of the current Rifleman Radio.

The Army currently uses the single-channel AN/PRC 154A Rifleman Radio as its soldier handheld data radio. It runs the Soldier Radio Waveform, which small-unit leaders use to download and transmit maps, images and texts to fellow infantry soldiers in a tactical environment.

If they want to talk to each other, they often rely on another single-channel handheld -- the AN/PRC 148 MultiBand Inter/Intra Team Radio, or MBITR, which runs the Single Channel Ground and Airborne Radio, or SINCGARS, for voice communications.



The Army plans to release a request-for-proposal in 2017 for a two-channel radio that will allow soldiers to run the Soldier Radio Waveform, or SRW, for data and SINCGARS for voice on one radio, according to Col. James P. Ross, who runs Project Manager Tactical Radios.

The change will mean that soldiers will no longer need the 148 MBITR and be able to rely on the new, two-channel radio for both data and voice communications, Ross said.

"We know industry can meet our requirements. … We know it's achievable," he said.

The move represents a change in strategy for the Army since the service awarded contracts in 2015 to Harris Corporation and Thales for a next-generation version of the Rifleman Radio.

"We went out with a competition for the next generation of the [Rifleman Radio]. Two companies, Harris and Thales, competed," Ross said. "We went through testing, and we were on the verge of being able to buy more of them when the Army said, 'Our strategy now is two-channel.' "

The Army had planned an initial buy of about 4,000 Thales AN/PRC-154B(V)1 radios and Harris AN/PRC-159(V)1 radios, according to Army program documents for fiscal 2015.

"We will not be taking action on those," Ross said.

The current Rifleman Radio was developed as part of the Handheld, Manpack, Small Form Fit, or HMS program. HMS radios are designed around the Army's tactical network strategy to create secure tactical networks without the logistical nightmare of a tower-based antenna infrastructure.

It's also a key part of the Army's Nett Warrior system. It hooks into an Android-based smartphone and gives soldiers in infantry brigade combat teams the ability to send and receive emails, view maps and watch icons on a digital map that represent the locations of their fellow soldiers. The concept came out of the Army's long-gestating Land Warrior program.

The Army purchased about 21,000 Rifleman Radios under low-rate initial production between 2012 and 2015.

Army officials maintain that are enough single-channel, handheld radios already produced under the low rate initial production that are sitting waiting to be fielded. The service plans to field another two brigade combat teams per year with the single-channel Rifleman Radios through 2019.

The Army will conduct testing of two-channel radios in 2017 and early 2018 and then down-select to one or two vendors sometime in 2018, Ross said. Operational testing is scheduled for 2019 and fielding will begin in 2020 if all goes as planned, he added.

For now, the Army intends to field four BCTs a year with two-channel handheld radios, Ross said.

Small-unit leaders would then be able to retire the MBITR radio from their kit -- a weight savings of about three pounds, according to Army officials at Program Executive Office Soldier.

"One thing the PEO Soldier is very passionate about is weight -- driving that weight down that the soldier carries," said Lt. Col. Derek Bird, product manager for Ground Soldier Systems, which helps oversee the Nett Warrior program.

"If we can cut three pounds off a soldier by taking two radios and shrinking it to one … that is a big deal."

Monday 9 January 2017

Why 2 Way Radio is Great For Your Company

Effective communication is crucial to the success of any business. Poor communication can easily lead to the collapse of any business regardless of size. If you’re running a huge business where keeping in touch with your staff is important, then you must put in place a very efficient communication system. A system that is not only efficient but also cost effective. These two factors are the reason 2 way radios are popular with modern businesses. A 2 way radio is a communication device that can both transmit and receive signal. It allows users using the same frequency to have a conversation at minimal or zero cost.

Why you should consider using a 2 way radio for your business



There are numerous benefits that a business will enjoy by making a 2 way radio its choice of communication. First, the radio provides a platform where you can conveniently keep in touch with your staff anytime you want. If you are the manager and the firm has several departments where you cannot physically access the staff, then this is the perfect device for you. Second, it’s easy to manage, unlike mobile phones that rely on the service providers. With radio system, you manage it from your premises.

The fact that a 2 way radio can only receive and send information at a set frequency improves your business' safety. You can keep the frequency a secret such that only certified individuals can access crucial information. The radio also allows you to create several channels for specific groups. This option allows you to call individual groups whenever the need arises. For example, if the information is meant for security department, it will not be necessary to have it broadcasted to other groups.

Its broad geographical coverage is another reason you should have this communication gadget. If your business Covers a vast geographic area such as a farm or a construction site, this is the perfect mode of communication to employ. It can also be an effective security monitoring system if it's well managed and utilized. Combining this system with GPS and the CCTV can significantly improve matters of security for your business.

But who can use the 2 way radio system?

A 2 way radio is one of the most user friend and flexible communication gadgets. Any firm can use it regardless of size. The radio is indeed the perfect model for a business that is struggling with geographical coverage challenges. It is ideal for shift workers, security staff, production line inspectors, farm workers, construction sites, shop watch and the list is endless. Anyone can use it. It only requires a little bit training on how to receive or to send a signal, and the user will be good to go.

Advantages of 2 way radios

One thing that stands out from this system is the reduced cost of communication- the cost is almost zero-rated compared to the other systems such as mobile phones. A 2 way radio is also very simple to use since you simply press the button to start talking. This speed can be crucial in cases of emergency compared to mobile phones where you will be needed to dial several buttons to make a call.

With this radio system, you can talk to multiple users at once- this is not possible with mobile phones. The gadget is built to military specs -the radio can be used in wet conditions and can withstand even a drop on the concrete surface. 2 way radio is one of the devices that can work in all areas of your business where mobile phones don’t work. The last but not the list of the advantage is that the radio stays on site, and thus different shifts can conveniently share it.

Key questions before installing a 2 way radio system

There are several questions that you must get clear answers to before you install a 2 way radio system. First, the area that the radio system is going to be used must be known. This will determine the power of the transmitter needed to cover that area. The number of people projected to use the radios should be the next question. The answer gives the number of radios required. The last question should be your budget. You must purchase what you can afford without compromising on the quality. With these questions answered, then you can have the most efficient 2 way radio communication system for your business.

Sunday 1 January 2017

Hytera launches new DMR handheld radio

Hytera have a wide range of radios in their catalogue now, and this is a new addition. The PD98X is for the professional communicator, a radio that has more added extras than a lot of smart phones. A couple of questions we would like to ask are:

What will the price be?

Can I use my current Hytera earpiece with this radio?

And when will this be available?

But this does seem to be a nice addition to the Hytera range and we can’t wait to try it out.

Hytera, a leading solution provider of professional mobile radio communications, has launched its latest digital mobile radio (DMR) handheld PD98X, adding another strong member to its top-notch DMR portfolio.

PD98X offers an exceptional audio experience through noise cancellation technology, while boasting new features including full duplex calls, recording capability via Micro SD, Bluetooth 4.0 for audio or data and single frequency repeater mode to increase coverage, said a statement from the company.

GS Kok, senior vice president of Hytera, said: “We are proud to announce the launch of PD98X.”

“A series of cutting-edge innovations and designs have been added into this new model to make it a full-featured radio to satisfy customers' increasing demand for functionality and user experience,” he said.

The addition of the PD985 positions Hytera with the most complete DMR radio portfolio to meet diversified requirements, from simple, reliable and cost-effective handsets (PD3 and PD4 series) to rugged and feature-rich solutions (PD5 and PD6 series), up to the high-end, professional system radios (PD7, PD9 and X1 series), it said.

The key advanced features of PD98X include:

•Full Duplex Call

PD98X enables frontline personnel to make telephony calls between other PD98X and telephones or mobile phones.

•Single Frequency Repeater Mode



Based on interference cancellation technology, PD98X is able to use one slot to receive a signal and another to transmit it in the same frequency using DMO mode to extend the communication distance.

•Built-in Bluetooth 4.0

With integrated Bluetooth 4.0, PD98X supports both audio transmit and programming via Bluetooth.

•Noise Cancellation and 2.5W Audio Output

Maximum 2.5W output speaker and new noise cancelling technology ensure clear and loud voice communication.

•IP68 Protection

PD98X complies with the highest dust and waterproof standards, to confront the harshest environments. The radio continues to function after submersion down to 2 meters for up to four hours.

•Smart Battery

This feature makes it easier to monitor the battery status, such as battery life time and charging time, reducing charging time dramatically.

•Audio Recording via Micro SD Card

PD98X supports up to a 32GB Micro SD card, to record up to 576 hours digital/analog audio.

The whole portfolio offers display and non-display, GPS and non-GPS, UHF and VHF versions, allowing customers to select the best handset for their daily operation and mission-critical scenarios,

Source - http://www.tradearabia.com/news/IND_312771.html